A Universal Gut Metagenomic-Derived Signature Predicts Cirrhosis
Dysregulation of the gut microbiome has been implicated in the progression of nonalcoholic fatty liver disease (NAFLD) to advanced fibrosis and cirrhosis. To determine the diagnostic capacity of this association, stool microbiomes were compared across 163 well-characterized participants encompassing non-NAFLD controls, NAFLD-cirrhosis patients and their first-degree relatives. Interrogation of shotgun metagenomic and untargeted metabolomic profiles using the Random Forest machine learning algorithm and differential abundance analysis identified discrete metagenomic and metabolomic signatures that were similarly effective in detecting cirrhosis (diagnostic accuracy 0.91, AUC). Combining the metagenomic signature with age and serum albumin levels accurately distinguished cirrhosis in etiologically and genetically distinct cohorts from geographically separated regions. Additional inclusion of serum aspartate aminotransferase levels, which are increased in cirrhosis patients, enabled discrimination of cirrhosis from earlier stages of fibrosis. These findings demonstrate that a core set of gut microbiome species may offer universal utility as a non-invasive diagnostic test for cirrhosis.
- Type: Other
- Archiver: European Genome-Phenome Archive (EGA)
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001006364 | 162 |
Publications | Citations |
---|---|
Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting.
Cell Metab 34: 2022 719-730.e4 |
32 |