Use the refinements panel to filter the search results by selecting one or more values from the refinement categories.
The purpose of the POAAGG study is to investigate the genetic architecture of primary open-angle glaucoma (POAG) in African Americans. This population is up to eight times more likely to develop glaucoma than non-Hispanic whites, yet no large-scale genetics studies have specifically addressed this ethnic group. The POAAGG study aims to enroll 7765 patients, consisting of a discovery cohort of 5500 subjects (2000 cases and 3500 controls) and a validation cohort of 2265 subjects (1000 cases and 1265 controls). The study population consists of self-identified blacks (African Americans, African descent, or African Caribbean), 35 years or older, identified from the Philadelphia region. Subjects are recruited from the Scheie Eye Institute and its research sites in Philadelphia, PA, as well as from the Penn Medicine Biobank. Fellowship-trained glaucoma specialists classify each subject as a case, control, or glaucoma suspect based on specified criteria. As of 02/01/2017, a total of 8187 subjects have been recruited to the POAAGG study, including 2522 cases, 4545 controls, and 1120 suspects. A comprehensive genetic analysis of POAG, including a genome-wide association analysis, is currently underway. The GWAS was conducted on the Illumina Infinium Multi Ethnic Genotyping Array (MEGA), which contained custom content tailored to POAG and African Americans. A comprehensive genetic analysis of quantitative traits associated with POAG is also in progress. Over 90% of cases have full phenotypic information, including intraocular pressure, cup-to-disc ratio, central corneal thickness, retinal nerve fiber layer thickness, visual acuity, and visual fields.
Multiple Myeloma (MM) is a plasma cell dyscrasia characterized by bone marrow (BM) infiltration and lytic bone lesions. Recent studies of massive parallel sequencing of tumor cells obtained from the BM of patients with MM have demonstrated significant clonal heterogeneity in MM. Despite this remarkable clonal heterogeneity, it could be envisioned that such clonal diversity may be even higher since single BM samples only represent a small fraction of the whole BM compartment, and the pattern of BM infiltration in MM is typically patchy. In addition, BM biopsies are painful and cannot be repeated multiple times during the course of therapy, indicating a need for less invasive methods to molecularly characterize MM patients and monitor disease progression during the therapy. Thus, optimal characterization of circulating tumor cells (CTCs) may represent a non-invasive method to capture relevant mutations present in PC clones. In addition, MM almost always progresses from precursor states of monoclonal gammopathy of undetermined significance (MGUS)/smoldering multiple myeloma (SMM) to overt MM. However, some patients rapidly progress from MGUS/SMM to overt MM (progressors) with a rate of progression of up to 70% over 5 years, while others remain indolent with minimal progression over the same time period (non-progressors). Although many patients are diagnosed with earlier phases of disease, most patients do not receive treatment until their disease progresses, at which time they have overt end-organ damage. This concept of initiating therapy at the time of symptomatic disease is analogous to initiating therapy in patients with solid tumors only after the development of measurable metastatic disease. It is therefore not surprising that cure is not achieved for most patients with MM. Interestingly, studies have demonstrated that MGUS/SMM clones may already harbor chromosomal alterations (Ig loci or hyperdiploidy) and that progression to MM is mainly due to expansion of clones that were already present in the early stages of MGUS/SMM. However, the biological factors that discriminate progressors from non-progressors in MGUS/SMM are not well known. Therefore, our overarching hypothesis is that an effective therapeutic intervention will result from defining genomic and transcriptomic markers that are associated with disease progression. We believe, therefore, that focused research studies that define molecular mechanisms of clonal evolution in MGUS/SMM/MM will identify novel biomarkers of disease progression and help develop therapeutic agents that prevent or delay progression from MGUS to overt MM. Indeed, by eradicating the disease at the precursor stages, MM may become a preventable disease. Recently, a new term called Clonal Hematopoiesis of Indeterminate Potential (CHIP) has been proposed to describe asymptomatic individuals with hematologic malignancy-associated somatic mutations. Those individuals do not fulfill any diagnostic criteria for any hematological malignancy yet they have a tendency to progress into myelodysplastic syndrome (MDS) or myeloid or lymphoid neoplasia at a rate of around 0.5-1% per year, similar to MGUS. The frequency of CHIP and role of HSCs mutations in enhancing acquisition of somatic mutations in MM plasma cells, allowing progression following treatment, has not been studied. Investigating the dysregulated pathways in early progenitor cells would allow us to understand the reasons of progression and establish novel therapeutic and potentially preventive strategies. This study dissects genomic and transcriptomic characteristics of clonal evolution from MGUS/SMM to MM as well as the characteristics of the tumor microenvironment/immune cells/peripheral blood. Our hypothesis is that molecular biomarkers will be strong predictors of progression from MGUS/SMM to MM and will allow for the development of novel therapeutic agents that prevent or delay this progression. We aim to define genomic and transcriptomic markers that lead to progression from MGUS/SMM to MM in tumor cells, blood biopsies (cell free DNA and circulating tumor cells), and the tumor microenvironment.
The main goals of the GICC Study were: 1) to identify novel genetic risk variants for glioma, as well as validate variants implicated by previous genome-wide association studies of glioma; and 2) to explore biologically relevant gene-gene and gene-environment interactions in glioma susceptibility. The GICC Study includes participants from the following centers: Brigham and Women's Hospital (Boston, Massachusetts), Case Western Reserve University (Cleveland, Ohio), Columbia University (New York, New York), the Danish Cancer Society Research Centre (Copenhagen, Denmark), Duke University (Durham, North Carolina), the University of Texas MD Anderson Cancer Center (Houston, Texas), Memorial Sloan Kettering Cancer Center (New York, New York), the Mayo Clinic (Rochester, Minnesota), NorthShore HealthSystem (Chicago, Illinois), Umea University (Umea, Sweden), the University of California, San Francisco (San Francisco, California), the University of Southern California (Los Angeles, California), and the Institute of Cancer Research (London, United Kingdom).
Background and Rationale for the Childhood Cancer Survivor Study (CCSS) Over the last several decades, advances in treatments for childhood and adolescent cancer have substantially improved survival following diagnosis. These improvements gave rise to the responsibility for investigating long-term treatment-associated morbidity and mortality. Early efforts to describe late effects were largely conducted through single-institution and limited consortia studies. However, by the mid-1980s, it became increasingly clear that these approaches had inherent limitations, including small sample size, convenience sampling, incompletely characterized populations, and limited length of follow-up. To overcome these limitations, the CCSS was proposed and funded by the National Cancer Institute (NCI) as a U01 grant in 1994. Subsequently, the strengths of the CCSS, including an efficient and extensive infrastructure, plus expanding database and biorepository, were recognized and appreciated. Thus, in consultation with the NCI, the CCSS was converted to a U24 (resource grant) funding mechanism to serve the scientific community in 2000. The overarching goal of the CCSS resource is to increase the conduct of innovative and high impact research related to pediatric cancer survivorship. CCSS has been used extensively by researchers from a wide range of disciplines to address a broad spectrum of topics. Strengths of the resource include its large size, comprehensive annotation of treatment exposures, ongoing longitudinal follow-up with characterization of a wide array of participant characteristics and outcomes, and an established biorepository. Design of the Childhood Cancer Survivor Study The Childhood Cancer Survivor Study (CCSS) is a multi-institutional, multi-disciplinary collaborative research resource comprised of a retrospective hospital-based cohort of survivors of childhood cancer and a comparison sibling cohort. Eligible survivors from 31 participating institutions were diagnosed between 1970 and 1999, prior to age 21 years, with selected common pediatric cancers (leukemia, central nervous system tumors, Hodgkin lymphoma, non-Hodgkin lymphoma, kidney tumors, neuroblastoma, soft tissue sarcoma, or bone tumors). All patients who survived five years from the date of diagnosis were eligible, regardless of disease or treatment status. The baseline questionnaire was completed by 24,368 survivors and 5,039 siblings recruited to serve as a comparison group. To date, participants have completed three general follow-up surveys, as well as a number of specialized surveys on specific topics (e.g. health care, insurance, screening practices, men's and women's health issues, adolescent health, sleep and fatigue). In addition, biological samples (buccal cells, saliva and/or blood) have been collected for over 11,000 participants. Full descriptions of the design and characteristics of the CCSS have been previously published (Robison et al; Leisenring et al.), and available data and samples are described at https://ccss.stjude.org/develop-a-study/gwas-data-resource.html. Treatment Data in the Childhood Cancer Survivor Study A key feature of CCSS is the availability of detailed treatment data, which were collected by abstraction of medical records for each individual member of the cohort. Detailed abstraction included dates of therapy, protocol information, and specific details regarding surgery, chemotherapy and radiation. Quantitative dose details were collected for 22 specific chemotherapeutic agents, including alkylating agents, anthracyclines, platinum compounds and epipodophyllotoxins. In addition to individual agent doses, algorithms have been created to calculate cumulative doses of all drugs in a specific class, such as anthracyclines (doxorubicin, daunomycin and idarubicin) or platinum agents (cisplatinum and carboplatinum). Data abstracted for surgeries included dates and both the names and corresponding International Classification of Diseases (9th revision) code. For radiation treatment data, all relevant records were sent to the Radiation Physics Center at M.D. Anderson Cancer Center for detailed abstraction and dosimetry. Initial body region dosimetry was performed for all participants, followed by more detailed dosimetry as needed for specific studies. Genomics Data in the Childhood Cancer Survivor StudyThe NCI's Division of Cancer Epidemiology and Genetics and CCSS investigators collaborated to conduct genomics studies (SNP array genotyping and whole exome sequencing) using samples from the CCSS Biorepository. Studies included all cohort participants with available DNA regardless of sex or ancestry when the genomics studies were initiated. Phenotype Data in the Childhood Cancer Survivor Study Vital status and cause of death for both participants and non-participants is determined via linkage with the National Death Index (NDI). Identification of subsequent neoplasms is based on self-report, followed by validation using medical records, or via NDI. A wide array of additional health outcomes have been ascertained via a comprehensive set of questions on the CCSS questionnaires, covering potential adverse events across a range of organ systems (hearing/vision/speech, urinary, hormonal, heart and circulatory, respiratory, digestive, brain and nervous systems). In addition to health outcomes, longitudinal data have been collected on demographics, health behaviors, family history, screening practices, insurance status, and a range of psychosocial and neurocognitive factors. A full listing of available variables and copies of the CCSS questionnaires are available at http://ccss.stjude.org. Research Areas in the Childhood Cancer Survivor Study Extensive use by the research community has resulted in over 265 published manuscripts on a wide range of topics, including associations between treatment factors and mortality, subsequent neoplasms, chronic health conditions, cardiac events, neurocognitive sequelae, psychosocial factors, fertility, and health status. Additional topics have included health behaviors, screening practices, health care access and utilization, statistical and exposure assessment methodology, and development of risk prediction models. A full listing of published manuscripts using CCSS data is available on the CCSS website at https://ccss.stjude.org/published-research/publications.html. The Childhood Cancer Survivor Study as a Resource for Investigators The CCSS is an NCI-funded resource (U24 CA55727) to promote and facilitate research among long-term survivors of cancer diagnosed during childhood and adolescence. Interested investigators are encouraged to develop research ideas and propose projects within CCSS, whether or not they are from a participating CCSS institution. The CCSS is now accepting proposals to collaborate with CCSS and NCI investigators in the use of genomics data and corresponding outcomes-related data to address innovative research questions relating to potential genetic contributions to risk for treatment-related outcomes. Any researcher, or group of researchers, qualified to conduct genetic research can submit a proposal. There are no restrictions relative to country, institution, or prior involvement in CCSS. A full description of the process for developing a proposal for genetic research in CCSS can be found at https://ccss.stjude.org/develop-a-study/gwas-data-resource.html, along with listings of approved proposals.
Allogeneic hematopoietic cell transplantation (HCT) is the only known curative option for many hematologic disorders. After transplantation, many patients develop immune mediated disorders that may be life-threatening. Post-HCT immune mediated disorders are rare relative to other diseases but the prototype of graft versus host disease (GVHD) develops in 30-70% of patients. The morbidity and mortality associated with these HCT-associated immune mediated disorders are major barriers to successful use of transplantation to cure rare hematologic malignancies such as leukemia, lymphoma, multiple myeloma, myelodysplastic/myeloproliferative syndromes amongst other diseases. The purpose of this study is to characterize and more completely define the onset and course of immune mediated disorders after allogeneic HCT, focusing on participants who develop cutaneous sclerosis, bronchiolitis obliterans syndrome (BOS), late acute graft-vs.-host disease (GVHD), and chronic GVHD. Of the participants undergoing allogeneic hematopoietic cell transplantation (HCT), can we, the researchers better identify who will develop immune-mediated disorders, what types of disorders participants will have, and whether these disorders will be severe or respond to currently available therapies? This is a longitudinal study of 1118 individuals (1081 adults and 100 children). Those participating in this study will be evaluated over a 3 year period at 9 study sites. Participants will be enrolled pre-transplant, or up to day 121 post transplantation. This wide enrollment window will allow sites to use recruitment methods that are most efficient at their institutions. At least 2 years of follow-up will ensure an adequate sample size, and sufficient time for observation of the full spectrum of immune mediated disorders. The data of 1023 individuals have been submitted to dbGaP.
Uveal melanoma is a rare form of melanoma that occurs in the eye and has no effective treatment once metastatic. To further characterize the genomic events driving uveal melanoma, whole exome sequencing was performed on 61 primary tumors derived from enucleations, 3 liver metasases, and paired normal DNA. Recurrent somatic genetic alterations including point mutations, small insertions and deletions, as well as copy number variations were identified. In addition, RNA sequencing of uveal melanoma cell lines expressing shRNAs was performed from total RNA as well as polysome-associated mRNA in order to identify transcripts regulated by EIF1AX at the level of translation.
Colorectal cancer is a heterogeneous disease arising from at least two precursors-the conventional adenoma and the serrated polyp. This dataset was used to test the relationship of the gut microbiota to specific colorectal polyp types. We included samples from two independent study populations based at colonoscopy clinics: the Centers for Disease Control and Prevention (CDC) Study of In-home Tests for Colorectal Cancer (SIT), and the New York University (NYU) Human Microbiome and Colorectal Tumor study. Gut microbiota were assessed in 667 colonoscopy-screened adults by 16S rRNA gene sequencing of stool samples, of which 540 were included in our analysis. Participants were categorized as conventional adenoma cases, serrated polyp cases, or polyp-free controls. CA cases were further classified as proximal or distal and as non-advanced or advanced. Serrated polyp cases were further classified as hyperplastic polyp or sessile serrated adenoma. Our results show associations between gut microbiome composition and presence of conventional adenomas, including reduced diversity and alterations in taxon abundance.
Follicular lymphoma (FL) is a generally incurable B-cell malignancy which has the potential to transform into highly aggressive lymphomas. Genomic studies indicate it is often a small subpopulation rather than the dominant population in the FL that gives rise to the more aggressive subtype. To resolve the underlying transcriptional networks of follicular B-cell lymphomas at single molecule and cell resolution, we leveraged droplet-based barcoding technology for highly parallel single cell RNA-Seq. We analyzed the transcriptomes from tens of thousands of cells derived from five primary FL tumors. Simultaneously, we conducted multi-dimensional flow cell sorting to validate our characterizing of cellular lineages and critical expressed proteins. For each tumor, we identified multiple cellular subpopulations, matching known hematopoietic lineages. Comparison of gene expression by matched malignant and normal B cells from the same patient revealed tumor-specific features. Malignant B cells exhibited restricted immunoglobulin light chain expression (either Ig Kappa or Ig Lambda), as well the expected upregulation of the BCL2 gene, but also down-regulation of the FCER2, CD52 and MHC class II genes. By leveraging the single-cell resolution on large numbers of cells per patient, we were able to examine tumor-resident T cells. We identified pairs of immune checkpoint molecules that were co-expressed, providing a potentially useful strategy for selection of patient-tailored combination immunotherapies. In summary, massively parallel measurement of single-cell expression in thousands of tumor cells and tumor-resident lymphocytes can be used to obtain a systems-level view of the tumor microenvironment and identify new avenues for therapeutic development.
The primary goal of this study was to collect and analyze genomic data from primary glioblastoma multiforme tumors. Our collaborators at St David's Medical Center (SDMC) obtained informed consent from patients undergoing surgery to remove a tumor in the brain. After consent was obtained, specimens were removed from the operating suite and flash frozen in liquid nitrogen. Tumors were analyzed if they were a grade III (anaplastic astrocytoma) or grade IV glioma (glioblastoma multiforme). Tumors were transported from SDMC to UT Austin, then weighed and homogenized. Chromatin immunoprecipitation was performed for 7 proteins in each tumor (histone modifications H3K4me3, H3K4me1, H3K9ac, H3K9me3, H3K27ac, H3K27me3, and the multifunctional insulator binding protein CTCF) and no-antibody input was also sequenced. An aliquot of tumor material was set aside for isolation of total RNA.
Original description of the study: From ELLIPSE (linked to the PRACTICAL consortium), we contributed ~78,000 SNPs to the OncoArray. A large fraction of the content was derived from the GWAS meta-analyses in European ancestry populations (overall and aggressive disease; ~27K SNPs). We also selected just over 10,000 SNPs from the meta-analyses in the non-European populations, with a majority of these SNPs coming from the analysis of overall prostate cancer in African ancestry populations as well as from the multiethnic meta-analysis. A substantial fraction of SNPs (~28,000) were also selected for fine-mapping of 53 loci not included in the common fine-mapping regions (tagging at r2>0.9 across ±500kb regions). We also selected a few thousand SNPs related with PSA levels and/or disease survival as well as SNPs from candidate lists provided by study collaborators, as well as from meta-analyses of exome SNP chip data from the Multiethnic Cohort and UK studies. The Contributing Studies: Aarhus: Hospital-based, Retrospective, Observational. Source of cases: Patients treated for prostate adenocarcinoma at Department of Urology, Aarhus University Hospital, Skejby (Aarhus, Denmark). Source of controls: Age-matched males treated for myocardial infarction or undergoing coronary angioplasty, but with no prostate cancer diagnosis based on information retrieved from the Danish Cancer Register and the Danish Cause of Death Register. AHS: Nested case-control study within prospective cohort. Source of cases: linkage to cancer registries in study states. Source of controls: matched controls from cohort ATBC: Prospective, nested case-control. Source of cases: Finnish male smokers aged 50-69 years at baseline. Source of controls: Finnish male smokers aged 50-69 years at baseline BioVu: Cases identified in a biobank linked to electronic health records. Source of cases: A total of 214 cases were identified in the VUMC de-identified electronic health records database (the Synthetic Derivative) and shipped to USC for genotyping in April 2014. The following criteria were used to identify cases: Age 18 or greater; male; African Americans (Black) only. Note that African ancestry is not self-identified, it is administratively or third-party assigned (which has been shown to be highly correlated with genetic ancestry for African Americans in BioVU; see references). Source of controls: Controls were identified in the de-identified electronic health record. Unfortunately, they were not age matched to the cases, and therefore cannot be used for this study. Canary PASS: Prospective, Multi-site, Observational Active Surveillance Study. Source of cases: clinic based from Beth Israel Deaconness Medical Center, Eastern Virginia Medical School, University of California at San Francisco, University of Texas Health Sciences Center San Antonio, University of Washington, VA Puget Sound. Source of controls: N/A CCI: Case series, Hospital-based. Source of cases: Cases identified through clinics at the Cross Cancer Institute. Source of controls: N/A CerePP French Prostate Cancer Case-Control Study (ProGene): Case-Control, Prospective, Observational, Hospital-based. Source of cases: Patients, treated in French departments of Urology, who had histologically confirmed prostate cancer. Source of controls: Controls were recruited as participating in a systematic health screening program and found unaffected (normal digital rectal examination and total PSA < 4 ng/ml, or negative biopsy if PSA > 4 ng/ml). COH: hospital-based cases and controls from outside. Source of cases: Consented prostate cancer cases at City of Hope. Source of controls: Consented unaffected males that were part of other studies where they consented to have their DNA used for other research studies. COSM: Population-based cohort. Source of cases: General population. Source of controls: General population CPCS1: Case-control - Denmark. Source of cases: Hospital referrals. Source of controls: Copenhagen General Population Study CPCS2: Source of cases: Hospital referrals. Source of controls: Copenhagen General Population Study CPDR: Retrospective cohort. Source of cases: Walter Reed National Military Medical Center. Source of controls: Walter Reed National Military Medical Center ACS_CPS-II: Nested case-control derived from a prospective cohort study. Source of cases: Identified through self-report on follow-up questionnaires and verified through medical records or cancer registries, identified through cancer registries or the National Death Index (with prostate cancer as the primary cause of death). Source of controls: Cohort participants who were cancer-free at the time of diagnosis of the matched case, also matched on age (±6 mo) and date of biospecimen donation (±6 mo). EPIC: Case-control - Germany, Greece, Italy, Netherlands, Spain, Sweden, UK. Source of cases: Identified through record linkage with population-based cancer registries in Italy, the Netherlands, Spain, Sweden and UK. In Germany and Greece, follow-up is active and achieved through checks of insurance records and cancer and pathology registries as well as via self-reported questionnaires; self-reported incident cancers are verified through medical records. Source of controls: Cohort participants without a diagnosis of cancer EPICAP: Case-control, Population-based, ages less than 75 years at diagnosis, Hérault, France. Source of cases: Prostate cancer cases in all public hospitals and private urology clinics of département of Hérault in France. Cases validation by the Hérault Cancer Registry. Source of controls: Population-based controls, frequency age matched (5-year groups). Quotas by socio-economic status (SES) in order to obtain a distribution by SES among controls identical to the SES distribution among general population men, conditionally to age. ERSPC: Population-based randomized trial. Source of cases: Men with PrCa from screening arm ERSPC Rotterdam. Source of controls: Men without PrCa from screening arm ERSPC Rotterdam ESTHER: Case-control, Prospective, Observational, Population-based. Source of cases: Prostate cancer cases in all hospitals in the state of Saarland, from 2001-2003. Source of controls: Random sample of participants from routine health check-up in Saarland, in 2000-2002 FHCRC: Population-based, case-control, ages 35-74 years at diagnosis, King County, WA, USA. Source of cases: Identified through the Seattle-Puget Sound SEER cancer registry. Source of controls: Randomly selected, age-frequency matched residents from the same county as cases Gene-PARE: Hospital-based. Source of cases: Patients that received radiotherapy for treatment of prostate cancer. Source of controls: n/a Hamburg-Zagreb: Hospital-based, Prospective. Source of cases: Prostate cancer cases seen at the Department of Oncology, University Hospital Center Zagreb, Croatia. Source of controls: Population-based (Croatia), healthy men, older than 50, with no medical record of cancer, and no family history of cancer (1st & 2nd degree relatives) HPFS: Nested case-control. Source of cases: Participants of the HPFS cohort. Source of controls: Participants of the HPFS cohort IMPACT: Observational. Source of cases: Carriers and non-carriers (with a known mutation in the family) of the BRCA1 and BRCA2 genes, aged between 40 and 69, who are undergoing prostate screening with annual PSA testing. This cohort has been diagnosed with prostate cancer during the study. Source of controls: Carriers and non-carriers (with a known mutation in the family) of the BRCA1 and BRCA2 genes, aged between 40 and 69, who are undergoing prostate screening with annual PSA testing. This cohort has not been diagnosed with prostate cancer during the study. IPO-Porto: Hospital-based. Source of cases: Early onset and/or familial prostate cancer. Source of controls: Blood donors Karuprostate: Case-control, Retrospective, Population-based. Source of cases: From FWI (Guadeloupe): 237 consecutive incident patients with histologically confirmed prostate cancer attending public and private urology clinics; From Democratic Republic of Congo: 148 consecutive incident patients with histologically confirmed prostate cancer attending the University Clinic of Kinshasa. Source of controls: From FWI (Guadeloupe): 277 controls recruited from men participating in a free systematic health screening program open to the general population; From Democratic Republic of Congo: 134 controls recruited from subjects attending the University Clinic of Kinshasa KULEUVEN: Hospital-based, Prospective, Observational. Source of cases: Prostate cancer cases recruited at the University Hospital Leuven. Source of controls: Healthy males with no history of prostate cancer recruited at the University Hospitals, Leuven. LAAPC: Subjects were participants in a population-based case-control study of aggressive prostate cancer conducted in Los Angeles County. Cases were identified through the Los Angeles County Cancer Surveillance Program rapid case ascertainment system. Eligible cases included African American, Hispanic, and non-Hispanic White men diagnosed with a first primary prostate cancer between January 1, 1999 and December 31, 2003. Eligible cases also had (a) prostatectomy with documented tumor extension outside the prostate, (b) metastatic prostate cancer in sites other than prostate, (c) needle biopsy of the prostate with Gleason grade ≥8, or (d) needle biopsy with Gleason grade 7 and tumor in more than two thirds of the biopsy cores. Eligible controls were men never diagnosed with prostate cancer, living in the same neighborhood as a case, and were frequency matched to cases on age (± 5 y) and race/ethnicity. Controls were identified by a neighborhood walk algorithm, which proceeds through an obligatory sequence of adjacent houses or residential units beginning at a specific residence that has a specific geographic relationship to the residence where the case lived at diagnosis. Malaysia: Case-control. Source of cases: Patients attended the outpatient urology or uro-onco clinic at University Malaya Medical Center. Source of controls: Population-based, age matched (5-year groups), ascertained through electoral register, Subang Jaya, Selangor, Malaysia MCC-Spain: Case-control. Source of cases: Identified through the urology departments of the participating hospitals. Source of controls: Population-based, frequency age and region matched, ascertained through the rosters of the primary health care centers MCCS: Nested case-control, Melbourne, Victoria. Source of cases: Identified by linkage to the Victorian Cancer Registry. Source of controls: Cohort participants without a diagnosis of cancer MD Anderson: Participants in this study were identified from epidemiological prostate cancer studies conducted at the University of Texas MD Anderson Cancer Center in the Houston Metropolitan area. Cases were accrued in the Houston Medical Center and were not restricted with respect to Gleason score, stage or PSA. Controls were identified via random-digit-dialing or among hospital visitors and they were frequency matched to cases on age and race. Lifestyle, demographic, and family history data were collected using a standardized questionnaire. MDACC_AS: A prospective cohort study. Source of cases: Men with clinically organ-confined prostate cancer meeting eligibility criteria for a prospective cohort study of active surveillance at MD Anderson Cancer Center. Source of controls: N/A MEC: The Multiethnic Cohort (MEC) is comprised of over 215,000 men and women recruited from Hawaii and the Los Angeles area between 1993 and 1996. Between 1995 and 2006, over 65,000 blood samples were collected from participants for genetic analyses. To identify incident cancer cases, the MEC was cross-linked with the population-based Surveillance, Epidemiology and End Results (SEER) registries in California and Hawaii, and unaffected cohort participants with blood samples were selected as controls MIAMI (WFPCS): Prostate cancer cases and controls were recruited from the Departments of Urology and Internal Medicine of the Wake Forest University School of Medicine using sequential patient populations as described previously (PMID:15342424). All study subjects received a detailed description of the study protocol and signed their informed consent, as approved by the medical center's Institutional Review Board. The general eligibility criteria were (i) able to comprehend informed consent and (ii) without previously diagnosed cancer. The exclusion criteria were (i) clinical diagnosis of autoimmune diseases; (ii) chronic inflammatory conditions; and (iii) infections within the past 6 weeks. Blood samples were collected from all subjects. MOFFITT: Hospital-based. Source of cases: clinic based from Moffitt Cancer Center. Source of controls: Moffitt Cancer Center affiliated Lifetime cancer screening center NMHS: Case-control, clinic based, Nashville TN. Source of cases: All urology clinics in Nashville, TN. Source of controls: Men without prostate cancer at prostate biopsy. PCaP: The North Carolina-Louisiana Prostate Cancer Project (PCaP) is a multidisciplinary population-based case-only study designed to address racial differences in prostate cancer through a comprehensive evaluation of social, individual and tumor level influences on prostate cancer aggressiveness. PCaP enrolled approximately equal numbers of African Americans and Caucasian Americans with newly-diagnosed prostate cancer from North Carolina (42 counties) and Louisiana (30 parishes) identified through state tumor registries. African American PCaP subjects with DNA, who agreed to future use of specimens for research, participated in OncoArray analysis. PCMUS: Case-control - Sofia, Bulgaria. Source of cases: Patients of Clinic of Urology, Alexandrovska University Hospital, Sofia, Bulgaria, PrCa histopathologically confirmed. Source of controls: 72 patients with verified BPH and PSA<3,5; 78 healthy controls from the MMC Biobank, no history of PrCa PHS: Nested case-control. Source of cases: Participants of the PHS1 trial/cohort. Source of controls: Participants of the PHS1 trial/cohort PLCO: Nested case-control. Source of cases: Men with a confirmed diagnosis of prostate cancer from the PLCO Cancer Screening Trial. Source of controls: Controls were men enrolled in the PLCO Cancer Screening Trial without a diagnosis of cancer at the time of case ascertainment. Poland: Case-control. Source of cases: men with unselected prostate cancer, diagnosed in north-western Poland at the University Hospital in Szczecin. Source of controls: cancer-free men from the same population, taken from the healthy adult patients of family doctors in the Szczecin region PROCAP: Population-based, Retrospective, Observational. Source of cases: Cases were ascertained from the National Prostate Cancer Register of Sweden Follow-Up Study, a retrospective nationwide cohort study of patients with localized prostate cancer. Source of controls: Controls were selected among men referred for PSA testing in laboratories in Stockholm County, Sweden, between 2010 and 2012. PROGReSS: Hospital-based, Prospective, Observational. Source of cases: Prostate cancer cases from the Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain. Source of controls: Cancer-free men from the same population ProMPT: A study to collect samples and data from subjects with and without prostate cancer. Retrospective, Experimental. Source of cases: Subjects attending outpatient clinics in hospitals. Source of controls: Subjects attending outpatient clinics in hospitals ProtecT: Trial of treatment. Samples taken from subjects invited for PSA testing from the community at nine centers across United Kingdom. Source of cases: Subjects who have a proven diagnosis of prostate cancer following testing. Source of controls: Identified through invitation of subjects in the community. PROtEuS: Case-control, population-based. Source of cases: All new histologically-confirmed cases, aged less or equal to 75 years, diagnosed between 2005 and 2009, actively ascertained across Montreal French hospitals. Source of controls: Randomly selected from the Provincial electoral list of French-speaking men between 2005 and 2009, from the same area of residence as cases and frequency-matched on age. QLD: Case-control. Source of cases: A longitudinal cohort study (Prostate Cancer Supportive Care and Patient Outcomes Project: ProsCan) conducted in Queensland, through which men newly diagnosed with prostate cancer from 26 private practices and 10 public hospitals were directly referred to ProsCan at the time of diagnosis by their treating clinician (age range 43-88 years). All cases had histopathologically confirmed prostate cancer, following presentation with an abnormal serum PSA and/or lower urinary tract symptoms. Source of controls: Controls comprised healthy male blood donors with no personal history of prostate cancer, recruited through (i) the Australian Red Cross Blood Services in Brisbane (age range 19-76 years) and (ii) the Australian Electoral Commission (AEC) (age and post-code/ area matched to ProsCan, age range 54-90 years). RAPPER: Multi-centre, hospital based blood sample collection study in patients enrolled in clinical trials with prospective collection of radiotherapy toxicity data. Source of cases: Prostate cancer patients enrolled in radiotherapy trials: CHHiP, RT01, Dose Escalation, RADICALS, Pelvic IMRT, PIVOTAL. Source of controls: N/A SABOR: Prostate Cancer Screening Cohort. Source of cases: Men >45 yrs of age participating in annual PSA screening. Source of controls: Males participating in annual PSA prostate cancer risk evaluations (funded by NCI biomarkers discovery and validation grant), recruited through University of Texas Health Science Center at San Antonio and affiliated sites or through study advertisements, enrolment open to the community SCCS: Case-control in cohort, Southeastern USA. Prospective, Observational, Population-based. Source of cases: SCCS entry population. Source of controls: SCCS entry population SCPCS: Population-based, Retrospective, Observational. Source of cases: South Carolina Central Cancer Registry. Source of controls: Health Care Financing Administration beneficiary file SEARCH: Case-control - East Anglia, UK. Source of cases: Men < 70 years of age registered with prostate cancer at the population-based cancer registry, Eastern Cancer Registration and Information Centre, East Anglia, UK. Source of controls: Men attending general practice in East Anglia with no known prostate cancer diagnosis, frequency matched to cases by age and geographic region SNP_Prostate_Ghent: Hospital-based, Retrospective, Observational. Source of cases: Men treated with IMRT as primary or postoperative treatment for prostate cancer at the Ghent University Hospital between 2000 and 2010. Source of controls: Employees of the University hospital and members of social activity clubs, without a history of any cancer. SPAG: Hospital-based, Retrospective, Observational. Source of cases: Guernsey. Source of controls: Guernsey STHM2: Population-based, Retrospective, Observational. Source of cases: Cases were selected among men referred for PSA testing in laboratories in Stockholm County, Sweden, between 2010 and 2012. Source of controls: Controls were selected among men referred for PSA testing in laboratories in Stockholm County, Sweden, between 2010 and 2012. PCPT: Case-control from a randomized clinical trial. Source of cases: Randomized clinical trial. Source of controls: Randomized clinical trial SELECT: Case-cohort from a randomized clinical trial. Source of cases: Randomized clinical trial. Source of controls: Randomized clinical trial TAMPERE: Case-control - Finland, Retrospective, Observational, Population-based. Source of cases: Identified through linkage to the Finnish Cancer Registry and patient records; and the Finnish arm of the ERSPC study. Source of controls: Cohort participants without a diagnosis of cancer UGANDA: Uganda Prostate Cancer Study: Uganda is a case-control study of prostate cancer in Kampala Uganda that was initiated in 2011. Men with prostate cancer were enrolled from the Urology unit at Mulago Hospital and men without prostate cancer (i.e. controls) were enrolled from other clinics (i.e. surgery) at the hospital. UKGPCS: ICR, UK. Source of cases: Cases identified through clinics at the Royal Marsden hospital and nationwide NCRN hospitals. Source of controls: Ken Muir's control- 2000 ULM: Case-control - Germany. Source of cases: familial cases (n=162): identified through questionnaires for family history by collaborating urologists all over Germany; sporadic cases (n=308): prostatectomy series performed in the Clinic of Urology Ulm between 2012 and 2014. Source of controls: age-matched controls (n=188): age-matched men without prostate cancer and negative family history collected in hospitals of Ulm WUGS/WUPCS: Cases Series, USA. Source of cases: Identified through clinics at Washington University in St. Louis. Source of controls: Men diagnosed and managed with prostate cancer in University based clinic. Acknowledgement Statements: Aarhus: This study was supported by the Danish Strategic Research Council (now Innovation Fund Denmark) and the Danish Cancer Society. The Danish Cancer Biobank (DCB) is acknowledged for biological material. AHS: This work was supported by the Intramural Research Program of the NIH, National Cancer Institute, Division of Cancer Epidemiology and Genetics (Z01CP010119). ATBC: This research was supported in part by the Intramural Research Program of the NIH and the National Cancer Institute. Additionally, this research was supported by U.S. Public Health Service contracts N01-CN-45165, N01-RC-45035, N01-RC-37004, HHSN261201000006C, and HHSN261201500005C from the National Cancer Institute, Department of Health and Human Services. BioVu: The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center's BioVU which is supported by institutional funding and by the National Center for Research Resources, Grant UL1 RR024975-01 (which is now at the National Center for Advancing Translational Sciences, Grant 2 UL1 TR000445-06). Canary PASS: PASS was supported by Canary Foundation and the National Cancer Institute's Early Detection Research Network (U01 CA086402) CCI: This work was awarded by Prostate Cancer Canada and is proudly funded by the Movember Foundation - Grant # D2013-36.The CCI group would like to thank David Murray, Razmik Mirzayans, and April Scott for their contribution to this work. CerePP French Prostate Cancer Case-Control Study (ProGene): None reported COH: SLN is partially supported by the Morris and Horowitz Families Endowed Professorship COSM: The Swedish Research Council, the Swedish Cancer Foundation CPCS1 & CPCS2: Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, DenmarkCPCS1 would like to thank the participants and staff of the Copenhagen General Population Study for their important contributions. CPDR: Uniformed Services University for the Health Sciences HU0001-10-2-0002 (PI: David G. McLeod, MD) CPS-II: The American Cancer Society funds the creation, maintenance, and updating of the Cancer Prevention Study II cohort. CPS-II thanks the participants and Study Management Group for their invaluable contributions to this research. We would also like to acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, and cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results program. EPIC: The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by the Danish Cancer Society (Denmark); the Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation, Greek Ministry of Health; Greek Ministry of Education (Greece); the Italian Association for Research on Cancer (AIRC) and National Research Council (Italy); the Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF); the Statistics Netherlands (The Netherlands); the Health Research Fund (FIS), Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, Spanish Ministry of Health ISCIII RETIC (RD06/0020), Red de Centros RCESP, C03/09 (Spain); the Swedish Cancer Society, Swedish Scientific Council and Regional Government of Skåne and Västerbotten, Fundacion Federico SA (Sweden); the Cancer Research UK, Medical Research Council (United Kingdom). EPICAP: The EPICAP study was supported by grants from Ligue Nationale Contre le Cancer, Ligue départementale du Val de Marne; Fondation de France; Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES). The EPICAP study group would like to thank all urologists, Antoinette Anger and Hasina Randrianasolo (study monitors), Anne-Laure Astolfi, Coline Bernard, Oriane Noyer, Marie-Hélène De Campo, Sandrine Margaroline, Louise N'Diaye, and Sabine Perrier-Bonnet (Clinical Research nurses). ERSPC: This study was supported by the DutchCancerSociety (KWF94-869,98-1657,2002-277,2006-3518, 2010-4800), The Netherlands Organisation for Health Research and Development (ZonMW-002822820, 22000106, 50-50110-98-311, 62300035), The Dutch Cancer Research Foundation (SWOP), and an unconditional grant from Beckman-Coulter-HybritechInc. ESTHER: The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. The ESTHER group would like to thank Hartwig Ziegler, Sonja Wolf, Volker Hermann, Heiko Müller, Karina Dieffenbach, Katja Butterbach for valuable contributions to the study. FHCRC: The FHCRC studies were supported by grants R01-CA056678, R01-CA082664, and R01-CA092579 from the US National Cancer Institute, National Institutes of Health, with additional support from the Fred Hutchinson Cancer Research Center. FHCRC would like to thank all the men who participated in these studies. Gene-PARE: The Gene-PARE study was supported by grants 1R01CA134444 from the U.S. National Institutes of Health, PC074201 and W81XWH-15-1-0680 from the Prostate Cancer Research Program of the Department of Defense and RSGT-05-200-01-CCE from the American Cancer Society. Hamburg-Zagreb: None reported HPFS: The Health Professionals Follow-up Study was supported by grants UM1CA167552, CA133891, CA141298, and P01CA055075. HPFS are grateful to the participants and staff of the Physicians' Health Study and Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. IMPACT: The IMPACT study was funded by The Ronald and Rita McAulay Foundation, CR-UK Project grant (C5047/A1232), Cancer Australia, AICR Netherlands A10-0227, Cancer Australia and Cancer Council Tasmania, NIHR, EU Framework 6, Cancer Councils of Victoria and South Australia, and Philanthropic donation to Northshore University Health System. We acknowledge support from the National Institute for Health Research (NIHR) to the Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden Foundation NHS Trust. IMPACT acknowledges the IMPACT study steering committee, collaborating centres, and participants. IPO-Porto: The IPO-Porto study was funded by Fundaçäo para a Ciência e a Tecnologia (FCT; UID/DTP/00776/2013 and PTDC/DTP-PIC/1308/2014) and by IPO-Porto Research Center (CI-IPOP-16-2012 and CI-IPOP-24-2015). MC and MPS are research fellows from Liga Portuguesa Contra o Cancro, Núcleo Regional do Norte. SM is a research fellow from FCT (SFRH/BD/71397/2010). IPO-Porto would like to express our gratitude to all patients and families who have participated in this study. Karuprostate: The Karuprostate study was supported by the the Frech National Health Directorate and by the Association pour la Recherche sur les Tumeurs de la ProstateKarusprostate thanks Séverine Ferdinand. KULEUVEN: F.C. and S.J. are holders of grants from FWO Vlaanderen (G.0684.12N and G.0830.13N), the Belgian federal government (National Cancer Plan KPC_29_023), and a Concerted Research Action of the KU Leuven (GOA/15/017). TVDB is holder of a doctoral fellowship of the FWO. LAAPC: This study was funded by grant R01CA84979 (to S.A. Ingles) from the National Cancer Institute, National Institutes of Health. Malaysia: The study was funded by the University Malaya High Impact Research Grant (HIR/MOHE/MED/35). Malaysia thanks all associates in the Urology Unit, University of Malaya, Cancer Research Initiatives Foundation (CARIF) and the Malaysian Men's Health Initiative (MMHI). MCCS: MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553, and 504711, and by infrastructure provided by Cancer Council Victoria. Cases and their vital status were ascertained through the Victorian Cancer Registry (VCR) and the Australian Institute of Health and Welfare (AIHW), including the National Death Index and the Australian Cancer Database. MCC-Spain: The study was partially funded by the Accion Transversal del Cancer, approved on the Spanish Ministry Council on the 11th October 2007, by the Instituto de Salud Carlos III-FEDER (PI08/1770, PI09/00773-Cantabria, PI11/01889-FEDER, PI12/00265, PI12/01270, and PI12/00715), by the Fundación Marqués de Valdecilla (API 10/09), by the Spanish Association Against Cancer (AECC) Scientific Foundation and by the Catalan Government DURSI grant 2009SGR1489. Samples: Biological samples were stored at the Parc de Salut MAR Biobank (MARBiobanc; Barcelona) which is supported by Instituto de Salud Carlos III FEDER (RD09/0076/00036). Also sample collection was supported by the Xarxa de Bancs de Tumors de Catalunya sponsored by Pla Director d'Oncologia de Catalunya (XBTC). MCC-Spain acknowledges the contribution from Esther Gracia-Lavedan in preparing the data. We thank all the subjects who participated in the study and all MCC-Spain collaborators. MD Anderson: Prostate Cancer Case-Control Studies at MD Anderson (MDA) supported by grants CA68578, ES007784, DAMD W81XWH-07-1-0645, and CA140388. MDACC_AS: None reported MEC: Funding provided by NIH grant U19CA148537 and grant U01CA164973. MIAMI (WFPCS): ACS MOFFITT: The Moffitt group was supported by the US National Cancer Institute (R01CA128813, PI: J.Y. Park). NMHS: Funding for the Nashville Men's Health Study (NMHS) was provided by the National Institutes of Health Grant numbers: RO1CA121060. PCaP only data: The North Carolina - Louisiana Prostate Cancer Project (PCaP) is carried out as a collaborative study supported by the Department of Defense contract DAMD 17-03-2-0052. For HCaP-NC follow-up data: The Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study is carried out as a collaborative study supported by the American Cancer Society award RSGT-08-008-01-CPHPS. For studies using both PCaP and HCaP-NC follow-up data please use: The North Carolina - Louisiana Prostate Cancer Project (PCaP) and the Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study are carried out as collaborative studies supported by the Department of Defense contract DAMD 17-03-2-0052 and the American Cancer Society award RSGT-08-008-01-CPHPS, respectively. For any PCaP data, please include: The authors thank the staff, advisory committees and research subjects participating in the PCaP study for their important contributions. For studies using PCaP DNA/genotyping data, please include: We would like to acknowledge the UNC BioSpecimen Facility and LSUHSC Pathology Lab for our DNA extractions, blood processing, storage and sample disbursement (https://genome.unc.edu/bsp). For studies using PCaP tissue, please include: We would like to acknowledge the RPCI Department of Urology Tissue Microarray and Immunoanalysis Core for our tissue processing, storage and sample disbursement. For studies using HCaP-NC follow-up data, please use: The Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study is carried out as a collaborative study supported by the American Cancer Society award RSGT-08-008-01-CPHPS. The authors thank the staff, advisory committees and research subjects participating in the HCaP-NC study for their important contributions. For studies that use both PCaP and HCaP-NC, please use: The authors thank the staff, advisory committees and research subjects participating in the PCaP and HCaP-NC studies for their important contributions. PCMUS: The PCMUS study was supported by the Bulgarian National Science Fund, Ministry of Education and Science (contract DOO-119/2009; DUNK01/2-2009; DFNI-B01/28/2012) with additional support from the Science Fund of Medical University - Sofia (contract 51/2009; 8I/2009; 28/2010). PHS: The Physicians' Health Study was supported by grants CA34944, CA40360, CA097193, HL26490, and HL34595. PHS members are grateful to the participants and staff of the Physicians' Health Study and Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. PLCO: This PLCO study was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIHPLCO thanks Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention at the National Cancer Institute, the screening center investigators and staff of the PLCO Cancer Screening Trial for their contributions to the PLCO Cancer Screening Trial. We thank Mr. Thomas Riley, Mr. Craig Williams, Mr. Matthew Moore, and Ms. Shannon Merkle at Information Management Services, Inc., for their management of the data and Ms. Barbara O'Brien and staff at Westat, Inc. for their contributions to the PLCO Cancer Screening Trial. We also thank the PLCO study participants for their contributions to making this study possible. Poland: None reported PROCAP: PROCAP was supported by the Swedish Cancer Foundation (08-708, 09-0677). PROCAP thanks and acknowledges all of the participants in the PROCAP study. We thank Carin Cavalli-Björkman and Ami Rönnberg Karlsson for their dedicated work in the collection of data. Michael Broms is acknowledged for his skilful work with the databases. KI Biobank is acknowledged for handling the samples and for DNA extraction. We acknowledge The NPCR steering group: Pär Stattin (chair), Anders Widmark, Stefan Karlsson, Magnus Törnblom, Jan Adolfsson, Anna Bill-Axelson, Ove Andrén, David Robinson, Bill Pettersson, Jonas Hugosson, Jan-Erik Damber, Ola Bratt, Göran Ahlgren, Lars Egevad, and Roy Ehrnström. PROGReSS: The PROGReSS study is founded by grants from the Spanish Ministry of Health (INT15/00070; INT16/00154; FIS PI10/00164, FIS PI13/02030; FIS PI16/00046); the Spanish Ministry of Economy and Competitiveness (PTA2014-10228-I), and Fondo Europeo de Desarrollo Regional (FEDER 2007-2013). ProMPT: Founded by CRUK, NIHR, MRC, Cambride Biomedical Research Centre ProtecT: Founded by NIHR. ProtecT and ProMPT would like to acknowledge the support of The University of Cambridge, Cancer Research UK. Cancer Research UK grants (C8197/A10123) and (C8197/A10865) supported the genotyping team. We would also like to acknowledge the support of the National Institute for Health Research which funds the Cambridge Bio-medical Research Centre, Cambridge, UK. We would also like to acknowledge the support of the National Cancer Research Prostate Cancer: Mechanisms of Progression and Treatment (PROMPT) collaborative (grant code G0500966/75466) which has funded tissue and urine collections in Cambridge. We are grateful to staff at the Welcome Trust Clinical Research Facility, Addenbrooke's Clinical Research Centre, Cambridge, UK for their help in conducting the ProtecT study. We also acknowledge the support of the NIHR Cambridge Biomedical Research Centre, the DOH HTA (ProtecT grant), and the NCRI/MRC (ProMPT grant) for help with the bio-repository. The UK Department of Health funded the ProtecT study through the NIHR Health Technology Assessment Programme (projects 96/20/06, 96/20/99). The ProtecT trial and its linked ProMPT and CAP (Comparison Arm for ProtecT) studies are supported by Department of Health, England; Cancer Research UK grant number C522/A8649, Medical Research Council of England grant number G0500966, ID 75466, and The NCRI, UK. The epidemiological data for ProtecT were generated though funding from the Southwest National Health Service Research and Development. DNA extraction in ProtecT was supported by USA Dept of Defense award W81XWH-04-1-0280, Yorkshire Cancer Research and Cancer Research UK. The authors would like to acknowledge the contribution of all members of the ProtecT study research group. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Department of Health of England. The bio-repository from ProtecT is supported by the NCRI (ProMPT) Prostate Cancer Collaborative and the Cambridge BMRC grant from NIHR. We thank the National Institute for Health Research, Hutchison Whampoa Limited, the Human Research Tissue Bank (Addenbrooke's Hospital), and Cancer Research UK. PROtEuS: PROtEuS was supported financially through grants from the Canadian Cancer Society (13149, 19500, 19864, 19865) and the Cancer Research Society, in partnership with the Ministère de l'enseignement supérieur, de la recherche, de la science et de la technologie du Québec, and the Fonds de la recherche du Québec - Santé.PROtEuS would like to thank its collaborators and research personnel, and the urologists involved in subjects recruitment. We also wish to acknowledge the special contribution made by Ann Hsing and Anand Chokkalingam to the conception of the genetic component of PROtEuS. QLD: The QLD research is supported by The National Health and Medical Research Council (NHMRC) Australia Project Grants (390130, 1009458) and NHMRC Career Development Fellowship and Cancer Australia PdCCRS funding to J Batra. The QLD team would like to acknowledge and sincerely thank the urologists, pathologists, data managers and patient participants who have generously and altruistically supported the QLD cohort. RAPPER: RAPPER is funded by Cancer Research UK (C1094/A11728; C1094/A18504) and Experimental Cancer Medicine Centre funding (C1467/A7286). The RAPPER group thank Rebecca Elliott for project management. SABOR: The SABOR research is supported by NIH/NCI Early Detection Research Network, grant U01 CA0866402-12. Also supported by the Cancer Center Support Grant to the Cancer Therapy and Research Center from the National Cancer Institute (US) P30 CA054174. SCCS: SCCS is funded by NIH grant R01 CA092447, and SCCS sample preparation was conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485). Data on SCCS cancer cases used in this publication were provided by the Alabama Statewide Cancer Registry; Kentucky Cancer Registry, Lexington, KY; Tennessee Department of Health, Office of Cancer Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana Tumor Registry; Mississippi Cancer Registry; South Carolina Central Cancer Registry; Virginia Department of Health, Virginia Cancer Registry; Arkansas Department of Health, Cancer Registry, 4815 W. Markham, Little Rock, AR 72205. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SCPCS: SCPCS is funded by CDC grant S1135-19/19, and SCPCS sample preparation was conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485). SEARCH: SEARCH is funded by a program grant from Cancer Research UK (C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. SNP_Prostate_Ghent: The study was supported by the National Cancer Plan, financed by the Federal Office of Health and Social Affairs, Belgium. SPAG: Wessex Medical ResearchHope for Guernsey, MUG, HSSD, MSG, Roger Allsopp STHM2: STHM2 was supported by grants from The Strategic Research Programme on Cancer (StratCan), Karolinska Institutet; the Linné Centre for Breast and Prostate Cancer (CRISP, number 70867901), Karolinska Institutet; The Swedish Research Council (number K2010-70X-20430-04-3) and The Swedish Cancer Society (numbers 11-0287 and 11-0624); Stiftelsen Johanna Hagstrand och Sigfrid Linnérs minne; Swedish Council for Working Life and Social Research (FAS), number 2012-0073STHM2 acknowledges the Karolinska University Laboratory, Aleris Medilab, Unilabs and the Regional Prostate Cancer Registry for performing analyses and help to retrieve data. Carin Cavalli-Björkman and Britt-Marie Hune for their enthusiastic work as research nurses. Astrid Björklund for skilful data management. We wish to thank the BBMRI.se biobank facility at Karolinska Institutet for biobank services. PCPT & SELECT are funded by Public Health Service grants U10CA37429 and 5UM1CA182883 from the National Cancer Institute. SWOG and SELECT thank the site investigators and staff and, most importantly, the participants who donated their time to this trial. TAMPERE: The Tampere (Finland) study was supported by the Academy of Finland (251074), The Finnish Cancer Organisations, Sigrid Juselius Foundation, and the Competitive Research Funding of the Tampere University Hospital (X51003). The PSA screening samples were collected by the Finnish part of ERSPC (European Study of Screening for Prostate Cancer). TAMPERE would like to thank Riina Liikanen, Liisa Maeaettaenen and Kirsi Talala for their work on samples and databases. UGANDA: None reported UKGPCS: UKGPCS would also like to thank the following for funding support: The Institute of Cancer Research and The Everyman Campaign, The Prostate Cancer Research Foundation, Prostate Research Campaign UK (now Prostate Action), The Orchid Cancer Appeal, The National Cancer Research Network UK, The National Cancer Research Institute (NCRI) UK. We are grateful for support of NIHR funding to the NIHR Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. UKGPCS should also like to acknowledge the NCRN nurses, data managers, and consultants for their work in the UKGPCS study. UKGPCS would like to thank all urologists and other persons involved in the planning, coordination, and data collection of the study. ULM: The Ulm group received funds from the German Cancer Aid (Deutsche Krebshilfe). WUGS/WUPCS: WUGS would like to thank the following for funding support: The Anthony DeNovi Fund, the Donald C. McGraw Foundation, and the St. Louis Men's Group Against Cancer.