Login
Register
Need Help?
ABOUT
ABOUT THE EGA
EGA
Privacy Notice
Security
Team
STATISTICS
Bibliography
Growth
Community
Archive
Distribution
Catalog
PROJECTS AND FUNDERS
Projects
Funders
GA4GH
Federated EGA
Beacon
DISCOVERY
CATALOGUE
Studies
Datasets
DACs
Synthetic Data
METADATA
Search Box
Public Metadata API
SUBMISSION
DATA
File preparation
Uploading files
METADATA
EGA Schema
Sequencing & Phenotype
Submitter Portal
Submitter Portal API
Array
Programmatic Submission XML
ACCESS
DATA ACCESS COMMITTEE
What is a DAC?
Best Practices
DAC Portal
Data Use Conditions
REQUEST DATA
How to request data?
Quality Control Reports
DOWNLOAD
Metadata
Files
PyEGA3
Live Outbox
Visualisation
FUSE Client
EGA QuickView
Tips on how to search
DACs
EGAC50000000005
DAC for SYNTHETIC DATA in FEGA Norway deposited by ELIXIR Norway
Contact Information
Mr Kjell Demo DAC Account Petersen
kjell.petersen@cbu.uib.no
Request Access
This DAC controls 3 datasets
Dataset ID
Description
Technology
Samples
EGAD50000000090
SYNTHETIC DATA: 1 sample with a set of paired fastq files, cram reference alignment file (with index) and GATK called variant vcf file (with index)
Illumina HiSeq 4000
1
EGAD50000000289
SYNTHETIC DATA: small fastq test file for technical testing
Illumina HiSeq 4000
1
EGAD50000000384
This dataset contains 10 tumor and normal pairs synthetic WGS data of colorectal cancer that were simulated in a standard format of Illumina paired-end reads. NEAT read simulator (version 3.0, https://github.com/zstephens/neat-genreads) is utilized to synthetize these 10 pairs tumor and normal WGS data. In the procedure of data generation, simulated parameters (i.e., sequencing error statistics, read fragment length distribution and GC% coverage bias) are learned from data models provided by NEAT. The average sequencing depth for tumor and normal samples aims to reach around 110X and 60X, respectively. For generation of synthetic normal WGS data per each sample, a germline variant profile from a real patient is down-sampled randomly, which includes 50% germline variants of such a patient. It is then mixed together with an in silico germline variant profile that is modelled randomly using an average mutation rate (0.001), finally constituting a full germline profile for normal synthetic WGS data. For generation of synthetic tumor WGS data per each sample, a pre-defined somatic short variant profile (SNVs+Indels) learn from a real CRC patient is added to the germline variant profile used for creating normal synthetic WGS data of the same patient, which is utilized to produce simulated sequences. Neither copy number profile nor structural variation profile is introduced into the tumor synthetic WGS data. Tumor content and ploidy are assumed to be 100% and 2.
unspecified
20