A clinically applicable connectivity signature for glioblastoma includes the tumor network driver CHI3L1
Tumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. The determination of TM-interconnectivity in individual tumors has been challenging and the impact on patient survival unresolved. Here, a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells has been established using a dye uptake methodology, confirmed with recording of cellular calcium epochs and validated with clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, network connectivity correlated with the mesenchymal subtype and dismal patient survival. CHI3L1 has been identified and validated as a robust molecular marker of connectivity with functional relevance. The connectivity signature allows novel insights into brain tumor biology, provides a proof-of-principle that tumor cell TM-connectivity is relevant for patients’ prognosis, and serves as a robust prognostic biomarker.
- Type: Other
- Archiver: European Genome-Phenome Archive (EGA)
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001012235 | Illumina HiSeq 4000 Illumina NovaSeq 6000 | 61 |
Publications | Citations |
---|---|
A clinically applicable connectivity signature for glioblastoma includes the tumor network driver CHI3L1.
Nat Commun 15: 2024 968 |
5 |