Non-viral precision T cell receptor replacement for personalized cell therapy
The T cell receptor (TCR) provides the fine specificity of T cells to recognize mutations in cancer cells 1-3. We developed a clinical-grade approach based on CRISPR/Cas9 non-viral precision genome editing to simultaneously knock-out the two endogenous TCR genes, TCRα (TRAC) and TCRβ (TRBC), and insert in the TRAC locus the two chains of a neoantigen-specific TCR (neoTCR), isolated from the patient’s own circulating T cells using a personalized library of soluble predicted neoantigen-HLA capture reagents. Sixteen patients with refractory solid cancers received up to three distinct neoTCR-transgenic cell products, each expressing a patient-specific neoTCR, in a cell dose-escalation, first-in-human phase 1 clinical trial (NCT03970382). One patient had grade 1 cytokine release syndrome, and one grade 3 encephalitis. All had the expected side effects from the lymphodepleting chemotherapy. Five patients had stable disease, and the other 11 had disease progression as best response on therapy. NeoTCR-transgenic T cells were detected in tumour biopsies post-infusion at frequencies higher than the native TCRs pre-infusion. This study demonstrates the feasibility of isolating and cloning multiple TCRs recognizing mutational neoantigens, the simultaneous knock-out of the endogenous TCR and knock-in of the neoTCRs using single-step, non-viral precision genome editing, the manufacturing of neoTCR engineered T cells at clinical grade, the safety of infusing up to three gene edited neoTCR T cell products, and the ability of the transgenic T cells to traffic to the patients’ tumours.
- Type: Other
- Archiver: European Genome-Phenome Archive (EGA)
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001009830 | Illumina HiSeq 2500 | 86 |