Robust methylation-based classification of brain tumours using nanopore sequencing
Background: DNA methylation-based classification of cancer provides a comprehensive molecular approach to diagnose tumours. In fact, DNA methylation profiling of human brain tumours already profoundly impacts clinical neuro-oncology. However, current implementations using hybridization microarrays are time-consuming and costly. We recently reported on shallow nanopore whole-genome sequencing for rapid and cost-effective generation of genome-wide 5-methylcytosine profiles as input to supervised classification. Here, we demonstrate that this approach allows to discriminate a wide spectrum of primary brain tumours. Results: Using public reference data of 82 distinct tumour entities, we performed nanopore genome sequencing on N=382 tissue samples covering 46 brain tumour (sub)types. Using bootstrap sampling in a cohort of N = 56 cases, we find that a minimum set of 1,000 random CpG features is sufficient for high-confidence classification by ad hoc random forests. We implemented score recalibration as confidence measure for interpretation in a clinical context and empirically determined a platform-specific threshold in a randomly sampled discovery cohort (N = 185). Applying this cut-off to an independent validation series (N = 184) yielded 148 classifiable cases (sensitivity 80.4%) and demonstrated 100 % specificity. Cross-lab validation demonstrated robustness with concordant results across four laboratories in 10/11 (90.9%) cases. In a prospective benchmarking (N = 15), median time to results was 21.1 hours. Conclusions: In conclusion, nanopore sequencing allows robust and rapid methylation-based classification across the full spectrum of brain tumours. Platform-specific confidence scores facilitate clinical implementation for which prospective evaluation is warranted and ongoing.
- Type: Other
- Archiver: European Genome-Phenome Archive (EGA)
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001009663 | MinION | 16 |