Heat selection enables highly scalable methylome profiling in cell-free DNA for noninvasive monitoring of cancer patients
Genome-wide analysis of cell-free DNA (cfDNA) methylation profile has been recognized as a promising approach for sensitive and specific detection of many cancers. However, scaling such genome-wide assays for clinical translation is impractical due to the high cost of whole genome bisulfite sequencing. We have shown that the small fraction of GC-rich genome is highly enriched in CpG sites and disproportionately harbors the majority of cancer-specific methylation signature. Here, we report on the simple but effective Heat enrichment of CpG-rich regions for Bisulfite Sequencing (Heatrich-BS) platform that allows for focused methylation profiling in these highly informative regions. Our novel method and bioinformatics algorithm enable accurate tumor burden estimation with high sensitivity and quantitative tracking of colorectal cancer patient’s response to treatment, at much reduced sequencing cost suitable for frequent monitoring. We also show, for the first time, tumor epigenetic subtyping from cfDNA using Heatrich-BS, which could enable patient stratification from non-invasive liquid biopsy. As such, Heatrich-BS holds great potential for highly scalable screening and regular monitoring of cancer using liquid biopsy.
- Type: Other
- Archiver: European Genome-Phenome Archive (EGA)
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001008714 | Illumina MiSeq Illumina NovaSeq 6000 | 79 | |
EGAD00001008715 | Illumina HiSeq 2000 Illumina MiSeq | 20 |