Clinical outcomes in ctDNA-positive urothelial carcinoma patients treated with adjuvant immunotherapy
Minimally invasive approaches to detect residual disease after surgery are urgently needed to select patients at highest risk for metastatic relapse for additional therapies. Circulating tumour DNA (ctDNA) holds promise as a biomarker for molecular residual disease (MRD) and relapse,1-3 but its clinical value has yet to be demonstrated in a randomised clinical trial. We evaluated outcomes in post-surgical ctDNA-positive (+) patients in a randomised phase III trial of adjuvant atezolizumab versus observation. IMvigor010 enrolled 809 patients with muscle-invasive urothelial carcinoma and did not meet its primary endpoint of disease-free survival (DFS) in the intent-to-treat population. Within the study, an exploratory planned analysis of prospectively collected plasma was performed, which tested the utility of ctDNA to identify patients who may benefit from adjuvant atezolizumab treatment. ctDNA was measured at the start of therapy (cycle 1 day 1; C1D1) and at week 6 (cycle 3 day 1; C3D1), and 581 patients were evaluable for ctDNA. The prevalence of ctDNA positivity at C1D1 was 37% (n=214), and ctDNA positivity identified patients with poor prognosis (observation arm DFS HR= 6.19 (4.29, 8.91), p<0.0001). Here we show that ctDNA(+) patients had improved DFS and overall survival (OS) with atezolizumab versus observation (DFS HR= 0.56 (0.41-0.77); p=0.0003 and OS HR= 0.58 (0.4-0.86); p=0.0063). No difference in DFS or OS between arms was noted for ctDNA-negative patients. The rate of ctDNA clearance was higher with atezolizumab (18%) versus observation (4%) (p=0.0041). Transcriptomic analysis revealed that tumours from ctDNA(+) patients had higher expression of cell cycle and keratin genes. Within the ctDNA(+) patient population in the atezolizumab arm, non-relapsing patients were further enriched in prominent immune response signatures including PD-L1, IFNG, CXCL9, and high tumour mutational burden, whereas relapse was associated with angiogenesis and fibroblast-transforming growth factor-beta signatures (F-TBRS). TCGA molecular subset analysis revealed increased efficacy of atezolizumab in patients with basal-squamous tumours, consistent with underlying tumour-immune contexture. Together these findings suggest that adjuvant atezolizumab may be associated with improved outcomes compared with observation in this high-risk ctDNA(+) population. These findings, if validated in other settings, would shift approaches to post-operative cancer care.
- Type: Other
- Archiver: European Genome-Phenome Archive (EGA)
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001007574 | - | ||
EGAD00001007575 | unspecified | 728 | |
EGAD00001007576 | - | ||
EGAD00001007653 | - | ||
EGAD00001007654 | - | ||
EGAD00001011108 | 1 |
Publications | Citations |
---|---|
Expression-based subtypes define pathologic response to neoadjuvant immune-checkpoint inhibitors in muscle-invasive bladder cancer.
Nat Commun 14: 2023 2126 |
19 |
Single-cell transcriptomic-informed deconvolution of bulk data identifies immune checkpoint blockade resistance in urothelial cancer.
iScience 27: 2024 109928 |
0 |