scRNA-seq of HGSC tumor and ascites
Immune regulatory metabolites are key features of the tumor microenvironment (TME), yet with a few notable exceptions, their identities remain largely unknown. We uncovered the immune regulatory metabolic states and metabolomes of sorted tumor and stromal, CD4+, and CD8+ cells from the tumor and ascites of patients with high-grade serous ovarian cancer (HGSC) using high-dimensional flow cytometry and metabolomics supplemented with single cell RNA sequencing. Flow cytometry revealed that tumor cells show a consistently greater uptake of glucose than T cells, but similar mitochondrial activity. Cells within the ascites and tumor had pervasive metabolite differences, with a striking enrichment in 1-methylnicotinamide (MNA) in T cells infiltrating the tumor compared to ascites. Despite the elevated levels of MNA in T cells, the expression of nicotinamide N-methyltransferase, the gene encoding the enzyme that catalyses the transfer of a methyl group from S-adenosylmethionine to nicotinamide, was restricted to fibroblasts and tumor cells. Treatment of T cells with MNA resulted in an increase in T cell-mediated secretion of the tumor promoting cytokine tumor necrosis factor alpha. Thus, the TME-derived metabolite MNA contributes to an alternative and non-cell autonomous mechanism of immune modulation of T cells in HGSC. Collectively, uncovering the tumor-T cell metabolome may reveal metabolic vulnerabilities that can be exploited using T cell-based immunotherapies to treat human cancer.
- Type: Other
- Archiver: European Genome-Phenome Archive (EGA)
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001006627 | Illumina HiSeq 4000 | 2 |
Publications | Citations |
---|---|
1-Methylnicotinamide is an immune regulatory metabolite in human ovarian cancer.
Sci Adv 7: 2021 eabe1174 |
34 |