Bioinformatic Methods and Bridging of Assay Results for Reliable Tumor Mutational Burden Assessment in Non-Small Cell Lung Cancer
Tumor mutational burden (TMB) has emerged as a predictive biomarker of response to immune checkpoint inhibitors. Standardization of TMB measurement is essential for implementing diagnostic tools to guide treatment. Here we evaluate bioinformatic TMB analysis by whole exome sequencing (WES) in formalin-fixed, paraffin-embedded samples. In CheckMate 026, TMB was retrospectively assessed in 312 patients with non-small cell lung cancer (58% of the intent-to-treat population) who received first-line nivolumab treatment or chemotherapy. We examined the sensitivity of TMB assessment to bioinformatic filtering methods and assessed concordance between TMB data derived by WES and the FoundationOne CDx™ assay. TMB scores comprising synonymous, indel, frameshift, and nonsense mutations (all mutations) were 3.1-fold higher than data including missense mutations only, but values were highly correlated (Spearman’s r = 0.99). Scores from CheckMate 026 samples including missense mutations only were similar to those generated from data in The Cancer Genome Atlas, but those including all mutations were generally higher. Using databases for germline subtraction (instead of matched controls) showed a trend for race-dependent increases in TMB scores. Parameter variation can therefore impact TMB calculations, highlighting the need for standardization. Encouragingly, WES and FoundationOne CDx outputs were highly correlated (Spearman’s r = 0.90) and differences could be accounted for by empirical calibration, suggesting that reliable TMB assessment across assays, platforms and centers is achievable.
- Type: Other
- Archiver: European Genome-Phenome Archive (EGA)
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001005035 | Illumina HiSeq 2500 | 368 |
Publications | Citations |
---|---|
Bioinformatic Methods and Bridging of Assay Results for Reliable Tumor Mutational Burden Assessment in Non-Small-Cell Lung Cancer.
Mol Diagn Ther 23: 2019 507-520 |
31 |