An MTOR mutation hitchhikes through renal embryogenesis, driving multifocal, multiphenotypic tumours - scRNA
Embryogenesis is a vulnerable time. Mutations in developmental cells can result in the seeding of cells predisposed to disease within mature organs, creating a field effect. We characterise an embryonic cancer mutation that drives multifocal, multiphenotypic renal tumours in a 14-year-old girl. Their shared MTOR mutation, absent from normal tissues, increases protein flexibility which enables a FAT domain hinge to dramatically increase mTORC1 activity. Developmental mutations, not usually detected in traditional genetic screening, have vital clinical importance in guiding prognosis, targeted treatment, and family screening decisions for paediatric tumours.
- 1 sample
- DAC: EGAC00001000000
- Technology: Illumina NovaSeq 6000
- PUB DUO:0000019 (version: 2021-02-23)publication requiredThis data use modifier indicates that requestor agrees to make results of studies using the data available to the larger scientific community.
- US DUO:0000026 (version: 2021-02-23)user specific restrictionThis data use modifier indicates that use is limited to use by approved users.
- IS DUO:0000028 (version: 2021-02-23)institution specific restrictionThis data use modifier indicates that use is limited to use within an approved institution.
- GRU DUO:0000042 (version: 2021-02-23)general research useThis data use permission indicates that use is allowed for general research use for any research purpose.
Wellcome Trust Sanger Institute Cancer Genome Group Data Sharing Policy
Studies are experimental investigations of a particular phenomenon, e.g., case-control studies on a particular trait or cancer research projects reporting matching cancer normal genomes from patients.
Study ID | Study Title | Study Type |
---|---|---|
Transcriptome Analysis |