Login
Register
Need Help?
ABOUT
ABOUT THE EGA
EGA
Privacy Notice
Security
Team
STATISTICS
Bibliography
Growth
Community
Archive
Distribution
Catalog
PROJECTS AND FUNDERS
Projects
Funders
GA4GH
Federated EGA
Beacon
DISCOVERY
CATALOGUE
Studies
Datasets
DACs
Synthetic Data
METADATA
Search Box
Public Metadata API
SUBMISSION
DATA
File preparation
Uploading files
METADATA
EGA Schema
Sequencing & Phenotype
Submitter Portal
Submitter Portal API
Array
Programmatic Submission XML
ACCESS
DATA ACCESS COMMITTEE
What is a DAC?
Best Practices
DAC Portal
Data Use Conditions
REQUEST DATA
How to request data?
Quality Control Reports
DOWNLOAD
Metadata
Files
PyEGA3
Live Outbox
Visualisation
FUSE Client
EGA QuickView
Tips on how to search
DACs
EGAC00001003292
Gustave Roussy's DAC MAPPYACTS PDX
Request Access
This DAC controls 1 dataset
Dataset ID
Description
Technology
Samples
EGAD00001011048
Pediatric patients with recurrent and refractory cancers are in most need for new treatments. This study developed patient-derived-xenograft (PDX) models within the European MAPPYACTS cancer precision medicine trial (NCT02613962). To date, 131 PDX models were established following heterotopical and/or orthotopical implantation in immunocompromised mice: 76 sarcomas, 25 other solid tumors, 12 central nervous system tumors, 15 acute leukemias, and 3 lymphomas. PDX establishment rate was 43%. Histology, whole exome and RNA sequencing revealed a high concordance with the primary patient’s tumor profile, human leukocyte-antigen characteristics and specific metabolic pathway signatures. A detailed patient molecular characterization, including specific mutations prioritized in the clinical molecular tumor boards are provided. Ninety models were shared with the IMI2 ITCC Paediatric Preclinical Proof-of-concept Platform (IMI2 ITCC-P4) for further exploitation. This new PDX biobank of unique recurrent childhood cancers provides an essential support for basic and translational research and new treatments development in advanced pediatric malignancies.
Illumina HiSeq 4000
Illumina NovaSeq 6000
NextSeq 500
166