Login
Register
Need Help?
ABOUT
ABOUT THE EGA
EGA
Privacy Notice
Security
Team
STATISTICS
Bibliography
Growth
Community
Archive
Distribution
Catalog
PROJECTS AND FUNDERS
Projects
Funders
GA4GH
Federated EGA
Beacon
DISCOVERY
CATALOGUE
Studies
Datasets
DACs
Synthetic Data
METADATA
Search Box
Public Metadata API
SUBMISSION
DATA
File preparation
Uploading files
METADATA
EGA Schema
Sequencing & Phenotype
Submitter Portal
Submitter Portal API
Array
Programmatic Submission XML
ACCESS
DATA ACCESS COMMITTEE
What is a DAC?
Best Practices
DAC Portal
Data Use Conditions
REQUEST DATA
How to request data?
Quality Control Reports
DOWNLOAD
Metadata
Files
PyEGA3
Live Outbox
Visualisation
FUSE Client
EGA QuickView
Tips on how to search
DACs
EGAC00001002254
DAC CTC
Contact Information
david.venet@bordet.be
Request Access
This DAC controls 1 dataset
Dataset ID
Description
Technology
Samples
EGAD00001009052
Single cell technologies allow the interrogation of tumor heterogeneity, providing insights into tumor evolution and treatment resistance. To better understand whether circulating tumor cells (CTCs) could complement metastatic biopsies for tumor genomic profiling, we characterized 11 single CTCs and 10 pooled CTC samples at the mutational and copy number aberration (CNA) levels, and compared these results with matched synchronous tumor biopsies from 3 metastatic breast cancer patients with triple-negative (TNBC), HER2-positive and estrogen receptor-positive (ER+) tumors. Similar CNA profiles and the same patient-specific driver mutations were found in bulk tissue and CTCs for the HER2-positive and TNBC tumors, whereas different CNA profiles and driver mutations were identified for the ER+ tumor, which presented two distinct clones in CTCs defined by mutations in ESR1 Y537N and TP53, respectively. Furthermore, de novo mutational signatures derived from CTCs described patient-specific biological processes. These data suggest that tumor tissue and CTCs provide complementary clinically relevant information to map tumor heterogeneity and tumor evolution.
Illumina HiSeq 2000
30