Login
Register
Need Help?
ABOUT
ABOUT THE EGA
EGA
Privacy Notice
Security
Team
STATISTICS
Bibliography
Growth
Community
Archive
Distribution
Catalog
PROJECTS AND FUNDERS
Projects
Funders
GA4GH
Federated EGA
Beacon
DISCOVERY
CATALOGUE
Studies
Datasets
DACs
Synthetic Data
METADATA
Search Box
Public Metadata API
SUBMISSION
DATA
File preparation
Uploading files
METADATA
EGA Schema
Sequencing & Phenotype
Submitter Portal
Submitter Portal API
Array
Programmatic Submission XML
ACCESS
DATA ACCESS COMMITTEE
What is a DAC?
Best Practices
DAC Portal
Data Use Conditions
REQUEST DATA
How to request data?
Quality Control Reports
DOWNLOAD
Metadata
Files
PyEGA3
Live Outbox
Visualisation
FUSE Client
EGA QuickView
Tips on how to search
DACs
EGAC00001000321
AMC Dept. Oncogenomics
Request Access
This DAC controls 1 dataset
Dataset ID
Description
Technology
Samples
EGAD00001001360
The majority of neuroblastoma patients have tumors that initially respond to chemotherapy, but a large proportion of patients will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole genome sequencing of 23 paired diagnostic and relapsed neuroblastomas showed clonal evolution from the diagnostic tumor with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed RAS-MAPK pathway mutations. Seven events were detected only in the relapse tumor while the others showed clonal enrichment. In neuroblastoma cell lines we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18, 61%) and these lesions predicted for sensitivity to MEK inhibition in vitro and in vivo. Our findings provide a rationale for genetic characterization of relapse neuroblastoma and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease.
221